National Aeronautics and Space Administration (NASA)
Canvas Category OEM : Aerospace
The National Aeronautics and Space Administration is America’s civil space program and the global leader in space exploration. The agency has a diverse workforce of just under 18,000 civil servants, and works with many more U.S. contractors, academia, and international and commercial partners to explore, discover, and expand knowledge for the benefit of humanity. With an annual budget of $23.2 billion in Fiscal Year 2021, which is less than 0.5% of the overall U.S. federal budget, NASA supports more than 312,000 jobs across the United States, generating more than $64.3 billion in total economic output (Fiscal Year 2019).
Assembly Line
Could AI build cities in space?
The moon is just the beginning for this waterless concrete
If NASA establishes a permanent presence on the moon, its astronauts’ homes could be made of a new 3D-printable, waterless concrete. Someday, so might yours. By accelerating the curing process for more rapid construction, this sulfur-based compound could become just as applicable on our home terrain as it is on lunar soil.
Traditional concrete requires large amounts of water, a commodity that will be in short supply on the moon and critically important for life support or scientific research, according to the American Society of Civil Engineers. While prior NASA projects have tested compounds that could be used to make “lunarcrete,” they’re still working to craft the right waterless material.
So LSU researchers are refining the formula, developing a new cement based on sulfur, which they heat until it’s molten to bind material without the need for water. In recent work, the team mixed their waterless cement with simulated lunar and Martian soil to create a 3D-printable concrete, which they used to assemble walls and beams. “We need automated construction, and NASA thinks 3D printing is one of the few viable technologies for building lunar infrastructure,” says Kazemian.
Matter Intelligence Emerges from Stealth with $12 Million Seed Funding to Revolutionize Remote Sensing and Global Perception
Matter Intelligence, a California-based remote sensing startup, has emerged from stealth, unveiling its plans to launch space sensors capable of capturing never-before-seen data about all matter on Earth, from surface to atmosphere. Matter specializes in advancing sensor infrastructure that captures incredibly detailed, beyond-visible data of both natural and artificial materials – creating the most comprehensive “extreme resolution” Earth observation dataset ever compiled. This data will power industries and helps AI models better understand and predict real-world events like never before. The startup has secured $12 million in seed funding led by Lowercarbon Capital, with participation from Toyota Ventures, Pear, Mark Cuban, and E2MC. The funding will accelerate the development of Matter’s sensing infrastructure.
Matter Intelligence’s sensors use hyperspectral imaging, a method that captures thousands of narrow spectral bands of light to distinguish unique material properties. This allows Matter to detect and classify objects and materials that are invisible to traditional optical, radar, or multispectral sensors. Matter’s sensors, designed for deployment on satellites, drones, and aircraft, will offer the world’s first sub-meter hyperspectral and thermal satellite capability.
The startup’s first satellite, EARTH-1, will create the first global encyclopedia of Earth’s material composition, imaging the entire globe with more than 500 times the information density of existing sensors. Matter’s sensors redefine remote sensing with unprecedented precision. Unlike traditional hyperspectral technology, which often falls short of user needs for detail and material differentiation, Matter captures composition, temperature, and structure with a new standard of quality. Traditional systems can’t deliver the resolution and quality needed for actionable data, but Matter provides images that are orders of magnitude more information dense than hyperspectral systems – with science-grade quality and sub-meter resolution. Matter’s data accelerates geospatial computer vision, unlocking mass adoption of Earth observation and enabling powerful predictive capabilities and resilience.
EARTH-1 will be Matter’s first satellite and provide the world’s first sub-meter hyperspectral and thermal imaging capability. Matter will soon announce EARTH-1’s launch date. EARTH-1 will map and monitor Earth’s materials in real time, from mineral composition and vegetation health to atmospheric conditions. With this satellite, Matter is building the first global encyclopedia of Earth’s material composition – capturing the most detailed, multi-dimensional data across the planet.
This New 3D Printable Wonder Material Could Help Propel NASA’s Future Missions Into Deep Space
Recognizing its potential, engineers with NASA’s Reactive Additive Manufacturing for the Fourth Industrial Revolution (RAMFIRE) project decided to see whether aluminum could be engineered in such a way that it could become a viable material for use in 3D printing rocket components. The result was A6061-RAM2, a novel aluminum variant that, when paired with a specialized powder in a process known as laser powder-directed energy deposition, or LP-DED, succeeded in producing the RAMFIRE rocket nozzles.
Although conventional nozzles may require hundreds, or even close to a thousand small, conjoined parts, the RAMFIRE nozzles are single-piece constructions, which helps to significantly reduce manufacturing and assembly time.
🖨️ Redwire BioFabrication Facility Successfully Prints First Human Knee Meniscus on ISS
Redwire Corporation announced that it has successfully 3D bioprinted the first human knee meniscus on orbit using its upgraded 3D BioFabrication Facility (BFF) on the International Space Station (ISS). This milestone opens the door to improved treatments for meniscal injuries, one of the most common injuries for U.S. Service Members.
The print returned to Earth onboard the SpaceX Crew-6 Mission for analysis following successful print operations in July. Before returning to Earth, the print was cultured for 14 days on the ISS in Redwire’s Advanced Space Experiment Processor (ADSEP). The print was conducted as part of the BFF-Meniscus-2 Investigation with the Uniformed Services University of the Health Sciences Center for Biotechnology (4D Bio3), a biomedical research center that explores and adapts promising biotechnologies for warfighter benefit. The investigation was conducted by NASA astronauts Frank Rubio, Warren “Woody” Hoburg, and Stephen Bowen, and UAE astronaut Sultan Al Neyadi.
NASA and IBM Openly Release Geospatial AI Foundation Model for NASA Earth Observation Data
A public/private partnership involving NASA and IBM Research has led to the release of NASA’s first open-source geospatial artificial intelligence (AI) foundation model for Earth observation data. Built using NASA’s Harmonized Landsat and Sentinel-2 (HLS) dataset, the release of the HLS Geospatial Foundation Model (HLS Geospatial FM) is a milestone in the application of AI for Earth science. The model has a wide range of potential applications, including tracking changes in land use, monitoring natural disasters, and predicting crop yields. The HLS Geospatial FM is available at Hugging Face, a public repository for open-source machine learning models.
NASA’s Interagency Implementation and Advanced Concepts Team (IMPACT) played a major role in this work. Located at NASA’s Marshall Space Flight Center in Huntsville, Alabama, IMPACT is a component of NASA’s Earth Science Data Systems (ESDS) Program and is charged with expanding the use of NASA Earth observation data through innovation, partnerships, and technology, including the application of AI to these data.
IBM and NASA Open Source Largest Geospatial AI Foundation Model on Hugging Face
IBM (NYSE: IBM) and open-source AI platform Hugging Face today announced that IBM’s watsonx.ai geospatial foundation model – built from NASA’s satellite data – will now be openly available on Hugging Face. It will be the largest geospatial foundation model on Hugging Face and the first-ever open-source AI foundation model built in collaboration with NASA.
The model leverages IBM foundation model technology and is part of IBM’s larger effort to create and train AI models that can be used for different tasks and apply information from one situation to another. In June, IBM announced the availability of watsonx, an AI and data platform that allows enterprises to scale and accelerate impact of the most advanced AI with trusted data. A commercial version of the geospatial model, which is part of IBM watsonx, will be available through the IBM Environmental Intelligence Suite (EIS) later this year.
🚀 2023 NASA Tipping Point Selections
NASA has selected 11 U.S. companies to develop technologies that will support long-term exploration on the Moon and in space under its sixth Tipping Point opportunity. The total expected NASA contribution to the partnerships is $150 million. Each company will contribute a minimum percentage, based on company size, of the total project cost. NASA’s Space Technology Mission Directorate (STMD) will issue milestone-based funded Space Act Agreements lasting for up to four years.
ICON awarded $57.2 million NASA contract to develop lunar 3D printing construction system
The 57.2 million USD contract builds upon previous NASA and Department of Defense funding for ICON’s ‘Project Olympus’. The project’s goal is to develop space-based construction systems to support planned exploration of the moon and beyond. ICON’s Olympus system is intended to be a multi-purpose construction system primarily using local Lunar and Martian resources as building materials.
Supporting NASA’s Artemis program, ICON plans to bring its additive manufacturing hardware and software into space by a lunar gravity simulation flight. It also intends to work with lunar regolith samples brought back from Apollo missions and various regolith simulants to determine their mechanical behaviour in simulated lunar gravity.
SpaceX is now building a Raptor engine a day, NASA says
NASA selected SpaceX and Starship for its Human Landing System in April 2021. In some ways, this was the riskiest choice of NASA’s options because Starship is a very large and technically advanced vehicle. However, because of the company’s self-investment of billions of dollars into the project, SpaceX submitted the lowest bid, and from its previous work with SpaceX, NASA had confidence that the company would ultimately deliver.
Two of NASA’s biggest technological development concerns were the new Raptor rocket engine and the transfer and storage of liquid oxygen and methane propellant in orbit, said Mark Kirasich, NASA’s deputy associate administrator who oversees the development of Artemis missions to the Moon. During a subcommittee meeting of NASA’s Advisory Council on Monday, however, Kirasich said SpaceX has made substantial progress in both areas.
Additive for Aerospace: Welcome to the New Frontier
Gao, a tech fellow and AM technical lead at Aerojet Rocketdyne, is particularly interested in the 3D printing of heat-resistant superalloys (HRSAs) and a special group of elements known as refractory metals. The first of these enjoy broad use in gas turbines and rocket engines, but it’s the latter that offers the greatest potential for changing the speed and manner in which humans propel aircraft, spacecraft, and weaponry from Point A to Point B.
“When you print these materials, they typically become both stronger and harder than their wrought or forged equivalents,” he said. “The laser promotes the creation of a supersaturated solid solution with fantastic properties, ones that cannot be achieved otherwise. When you combine this with AM’s ability to generate shapes that were previously impossible to manufacture, it presents some very exciting possibilities for the aerospace industry.”
Eric Barnes, a fellow of advanced and additive manufacturing at Northrop Grumman, says “Northrop Grumman and its customers are now in a position to more readily adopt additive manufacturing and prepare to enter that plateau of productivity because we have spent the past few years collecting the required data and generating the statistical information needed to ensure long term use of additive manufacturing in an aeronautical environment… In the future, you may be able to eliminate NDT completely. Comprehensive build data will also serve to reduce qualification timelines, and if you’re able to understand all that’s going on inside the build chamber in real-time, machine learning and AI systems might be able to adjust process parameters such that you never have a bad part.”
Aerospace, Defense and Industry 4.0
“Designing for manufacturability, modeling the production environment, and then producing our products with a minimum of duplicated effort—this can give us the breakthroughs in speed and affordability that the A&D environment needs in a time of limited budgets and rapidly changing threats,” explains Daughters. “These technologies are an essential component to our ‘digital thread’ across the product life cycle. They give us the ability to simulate tradeoffs between capability, manufacturability, complexity, materials and cost before transitioning to the physical world.”
“In a nutshell, I4.0 involves leveraging technology to better serve the world,” says Matt Medley, industry director for A&D manufacturing at IFS, a multinational enterprise software company. “More than just collecting and processing mounds of data via sensors and the Industrial Internet of Things (IIoT), I4.0 is turning data into actionable intelligence to not only drive efficiency and grow profits, but to also help companies be good stewards of our natural resources and local communities. Aerospace and defense companies whose enterprise software can keep pace with developments like additive manufacturing, AI, digital twins, and virtual and augmented reality (V/AR) are the ones that will thrive in an increasingly digital 4.0 era.”
The Genius of 3D Printed Rockets
Evolutionary Algorithms: How Natural Selection Beats Human Design
An evolutionary algorithm, which is a subset of evolutionary computation, can be defined as a “population-based metaheuristic optimization algorithm.” These nature-inspired algorithms evolve populations of experimental solutions through numerous generations by using the basic principles of evolutionary biology such as reproduction, mutation, recombination, and selection.
Origins of the Digital Twin Concept
While the terminology has changed over time, the basic concept of the Digital Twin model has remained fairly stable from its inception in 2002. It is based on the idea that a digital informational construct about a physical system could be created as an entity on its own. This digital information would be a “twin” of the information that was embedded within the physical system itself and be linked with that physical system through the entire lifecycle of the system. The concept of the Digital Twin dates back to a University of Michigan presentation to industry in 2002 for the formation of a Product Lifecycle Management (PLM) center. The presentation slide, originated by Dr. Grieves, was simply called “Conceptual Ideal for PLM.” However, it did have all the elements of the Digital Twin: real space, virtual space, the link for data flow from real space to virtual space, the link for information flow from virtual space to real space and virtual sub-spaces.