Cloud Computing

Assembly Line

Navigating the Cloud: Joby Aviationโ€™s PLM migration to AWS

๐Ÿ“… Date:

โœ๏ธ Authors: Jayanth Ranjan, Ranjit Singh

๐Ÿ”– Topics: Product Lifecycle Management, Digital Transformation, Cloud Computing

๐Ÿข Organizations: Joby Aviation, Dassault Systems, AWS


Consistent with their commitment to leverage best-in-class tools for innovation in engineering and manufacturing, Joby Aviation took advantage of a major Product Lifecycle Management (PLM) version upgrade of their Dassault Systems 3DEXPERIENCE(3DX) environment to evaluate the benefits of a re-platform in AWS.

Some of the key challenges with their current on-premises solution were cost optimization, performance, availability, scalability (acquiring & releasing infrastructure), data resiliency, and testing new product upgrades. They wanted to make sure the new solution would address these challenges comprehensively and were inclined to take advantage of AWS as a means to modernize the implementation across the different layers of the architecture.

After the successful launch, Joby 3DX users have seen their large designs loading 30-40% faster. Additionally, Joby has achieved a 15% improvement to the application availability by mitigating historical issues related to storage, performance and scalability. Using the AWS modernized 3DX platform, Joby has been able to meet goals for data resiliency and reduced the time for adding additional storage and compute, enabling Joby to address cyclic periods of business demand.

Read more at AWS Blog

Improve your industrial operations with cloud-based SCADA systems

๐Ÿ“… Date:

โœ๏ธ Authors: Ryan Dsouza, Oscar Salcedo

๐Ÿ”– Topics: SCADA, Cloud Computing

๐Ÿข Organizations: AWS, Inductive Automation


There are several advantages of cloud-based SCADA systems, such as reducing the need for installing and maintaining expensive server hardware and software on premises and making your industrial data available wherever and whenever you need it. Cloud-based SCADA systems are increasingly important in IIoT and Industry 4.0 because they provide the automation, data collection, analysis, analytics, machine learning, and connectivity necessary to improve processes and operations. With cloud-based SCADA systems, customers have easier access to the data and can use cloud services to manage and analyze the data at scale.

Ignition is an integrated Software Platform for SCADA systems by Inductive Automation. The Inductive Automation partner solution deploys Ignition, a solution by AWS Partner Inductive Automation, to the AWS Cloud. The partner solution enhances availability, performance, observability, and resilience of SCADA applications. It provides both standalone and cluster deployment options of Ignition on Amazon EC2 Linux instances. Both options are designed to be secure and highly available, configured with best practices for security, network gateway connections, and database connectivity.

Read more at AWS for Industries

Industrial automation software management on AWS: End-to-end DevOps for factory automation coding to commissioning

๐Ÿ“… Date:

โœ๏ธ Authors: Srinivas Nidamarthi, Josef Waltl, Leo Kilfoy, Nishant Saini

๐Ÿ”– Topics: Cloud Computing, Programmable Logic Controller

๐Ÿข Organizations: Software Defined Automation, AWS


An industrial DevOps solution needs to break these barriers to traditional PLCs, coding, and commissioning. This article presents the application of end-to-end DevOps, from PLC code development to commissioning and beyond, based on a solution by Software Defined Automation (SDA), an AWS Partner. It delves into how DevOps, traditionally not synonymous with PLC or robot programming, can revolutionize these domains and how SDAโ€™s solution built on AWS storage and compute services provides a reliable, scalable, and secure platform for automation engineers to collaborate remotely and increase their productivity. This blog post elucidates the advantages of cloud-based DevOps using a customer case, particularly focusing on agile project management aspects; collaboration tools for industrial automation SIs; and a platform for code backups, version management, and reusable automation code standards.

The core features provided by SDA are Backup, Version Control, Browser-Based Engineering, and Secure Remote Access with Role Based Access Control. Version Control provides secure storage and traceability of PLC source code versions and changes backed by Amazon Simple Storage Service (Amazon S3), an object storage built to retrieve virtually any amount of data from anywhere. Version Pro is also central for collaboration, project management, the checkout/check-in process, and version comparisons. SDA Browser-Based Engineering uses AWS-hosted IDEs on Amazon Elastic Compute Cloud (Amazon EC2), which provides secure and resizable compute capacity for virtually any workload. These IDEs are streamed to web browsers using NICE DCV, a high-performance remote display protocol. SDA PLC Ops provides API-driven capabilities for vendor IDE interaction. It can be used for code-integrity checks and on-demand or scheduled backups of PLCs. This service is backed by Amazon EC2 for vendor-specific installations and Amazon Dynamo DBโ€”a serverless, NoSQL, fully managed databaseโ€”for metadata storage.

Read more at AWS for Industries

OT-IT Integration: AWS and Siemens break down data silos by closing the machine-to-cloud gap

๐Ÿ“… Date:

๐Ÿ”– Topics: IT OT Convergence, Cloud Computing

๐Ÿข Organizations: AWS, Siemens


AWS announced that AWS IoT SiteWise Edge, on-premises software that makes it easy to collect, organize, process, and monitor equipment data, can now be deployed directly from the Siemens Industrial Edge Marketplace to help simplify, accelerate, and reduce the cost of sending industrial equipment data to the AWS cloud. This new offering aims to help bridge the chasm between OT and IT by allowing customers to start ingesting OT data from a variety of industrial protocols into the cloud faster using Siemens Industrial Edge Devices already connected to machines, removing layers of configuration and accelerating time to value.

Customers can now jumpstart industrial data ingestion from machine to edge (Level 1 and Level 2 OT networks) by deploying AWS IoT SiteWise Edge using existing Siemens Industrial Edge infrastructure and connectivity applications such as SIMATIC S7+ Connector, Modbus TCP Connector, and more. You can then securely aggregate and process data from a large number of machines and production lines (Level 3), as well as send it to the AWS cloud for use across a wide range of use cases. This empowers process engineers, maintenance technicians, and efficiency champions to derive business value from operational data that is organized and contextualized for use in local and cloud applications, unlocking use cases such as asset monitoring, predictive maintenance, quality inspection, and energy management.

Read more at AWS Industry Blog

The Blueprint for Industrial Transformation: Building a Strong Data Foundation with AWS IoT SiteWise

๐Ÿ“… Date:

โœ๏ธ Authors: Sophie Pagalday, Sharon Allpress, Jan Borch, David Castro

๐Ÿ”– Topics: IIoT, OPC-UA, MQTT, Modbus, Cloud Computing, IT OT Convergence

๐Ÿข Organizations: AWS, Volkswagen


AWS IoT SiteWise is a managed service that makes it easy to collect, organize, and analyze data from industrial equipment at scale, helping customers make better, data-driven decisions. Our customers such as Volkswagen Group, Coca-Cola ฤฐรงecek, and Yara International have used AWS IoT SiteWise to build industrial data platforms that allow them to contextualize and analyze Operational Technology (OT) data generated across their plants, creating a global view of their operations and businesses. In addition, our AWS Partners such as Embassy of Things (EOT), Tata Consulting Services (TCS) Edge2Web, TensorIoT, and Radix Engineering have made AWS IoT SiteWise the foundation for purpose-built applications that enable use cases such as predictive maintenance and asset performance monitoring. Through these engagements with customers and partners, we have learned that the main obstacles in scaling digital transformation initiatives include project complexity, infrastructure costs, and time to value.

With newly added APIs, AWS IoT SiteWise now allows you to bulk import, export, and update industrial asset model metadata at scale from diverse systems such as data historians, other AWS accounts, or โ€“ in the case of AWS Independent Software Vendors (ISV) Partners โ€“ their own industrial data modeling tools.

To collect real-time data from equipment, AWS IoT SiteWise provides AWS IoT SiteWise Edge, software created by AWS and deployed on premises to make it easy to collect, organize, process, and monitor equipment at the edge. With SiteWise Edge, customers can securely connect to and read data from equipment using industrial protocols and standards such as OPC-UA. In collaboration with AWS Partner Domatica, we recently added support for an additional 10 industrial protocols including MQTT, Modbus, and SIMATIC S7, diversifying the type of data that can be ingested into AWS IoT SiteWise from equipment, machines, and legacy systems for processing at the edge or enriching your industrial data lake. By ingesting data to the cloud with sub-second latency, customers can use AWS IoT SiteWise to monitor hundreds of thousands of high-value assets across their industrial operations in near real time.

Read more at AWS Blog

ANYbotics uses AWS to deploy a global robot workforce for industrial inspections

๐Ÿ“… Date:

๐Ÿ”– Topics: XaaS, Cloud Computing

๐Ÿข Organizations: ANYbotics, AWS


ANYbotics, a pioneering company at the forefront of autonomous mobile robots, is using AWS to deploy their global robot workforce. They revolutionize the operation of large industrial facilities by providing intelligent inspection solutions that improve safety, efficiency, and sustainability. Connecting the physical and digital assets, ANYbotics helps companies with cutting-edge robotics technology to create an environment where robots and humans can work seamlessly together to achieve better results.

Robot-as-a-Service (RaaS) is a business model that offers robots and robotic services to customers on a subscription or pay-as-you-go basis, rather than selling robots as a one-time product. RaaS is ANYboticsโ€™ preferred model to scale the ANYmal fleet with a fully serviced offering for hardware and software. Itโ€™s a flexible business model without the need for upfront investments for their customers.

By using AWS services, ANYbotics can scale their applications up and down, depending on the current workload. They can add compute resources on demand within minutes and use the pay-as-you-go pricing model to operate cost efficiently. This is crucial for ANYbotics since they can easily adapt to fluctuation in the number of robots or the complexity of tasks without investing in on-premises hardware that might be underutilized during periods of lower demand. Scaling up is essential to ensure the future readiness of operating a growing fleet of ANYmal robots and meet the demand for more complex task solving applications.

Read more at AWS Blogs

Automate plant maintenance using MDE with ABAP SDK for Google Cloud

๐Ÿ“… Date:

โœ๏ธ Authors: Manas Srivastava, Devesh Singh

๐Ÿ”– Topics: Manufacturing Analytics, Cloud Computing, Data Architecture

๐Ÿข Organizations: Google, SAP, Litmus


Analyzing production data at scale for huge datasets is always a challenge, especially when thereโ€™s data from multiple production facilities involved with thousands of assets in production pipelines. To help solve this challenge, our Manufacturing Data Engine is designed to help manufacturers manage end-to-end shop floor business processes.

Manufacturing Data Engine (MDE) is a scalable solution that accelerates, simplifies, and enhances the ingestion, processing, contextualization, storage, and usage of manufacturing data for monitoring, analytical, and machine learning use cases. This suite of components can help manufacturers accelerate their transformation with Google Cloudโ€™s analytics and AI capabilities.

Read more at Google Cloud Blog

Bringing Scalable AI to the Edge with Databricks and Azure DevOps

๐Ÿ“… Date:

โœ๏ธ Authors: Andres Urrutia, Howard Wu, Nicole Lu, Bala Amavasai

๐Ÿ”– Topics: Cloud-to-Edge Deployment, Machine Learning, Cloud Computing, Edge computing

๐Ÿข Organizations: Databricks, Microsoft


The ML-optimized runtime in Databricks contains popular ML frameworks such as PyTorch, TensorFlow, and scikit-learn. In this solution accelerator, we will build a basic Random Forest ML model in Databricks that will later be deployed to edge devices to execute inferences directly on the manufacturing shop floor. The focus will essentially be the deployment of ML Model built on Databricks to edge devices.

Read more at Databricks Blog

Machine Learning Platform at Walmart

๐Ÿ“… Date:

โœ๏ธ Author: Thomas Vengal

๐Ÿ”– Topics: Machine Learning, Cloud Computing

๐Ÿข Organizations: Walmart


Walmart is the worldโ€™s largest retailer, and it handles a huge volume of products, distribution, and transactions through its physical stores and online stores. Walmart has a highly optimized supply chain that runs at scale to offer its customers shopping at lowest price. In the process, Walmart accumulates a huge amount of valuable information from its everyday operations. This data is used to build Artificial Intelligence (AI) solutions to optimize and increase efficiencies of operations and customer experience atWalmart. In this paper, we provide an overview of the guiding principles, technology architecture, and integration of various tools within Walmart and from the open-source committee in building the Machine Learning (ML) Platform. We present multiple ML use cases at Walmart and show how their solutions leverage this ML Platform. We then discuss the business impact of having a scalable ML platform and infrastructure, reflect on lessons learnt building and operating an ML platform and future work for it at Walmart.

Read more at Walmart Global Tech Blog

Transforming Semiconductor Yield Management with AWS and Deloitte

๐Ÿ“… Date:

๐Ÿ”– Topics: Cloud Computing, Manufacturing Analytics, Data Architecture

๐Ÿญ Vertical: Semiconductor

๐Ÿข Organizations: AWS, Deloitte


Together, AWS and Deloitte have developed a reference architecture to enable the aforementioned yield management capabilities. The architecture, shown in Figure 1, depicts how to collect, store, analyze and act on the yield related data throughout the supply chain. The following describes how the modernized yield management architecture enables the six capabilities discussed earlier.

Read more at AWS Blogs

Collaboration and the speed of compute

๐Ÿ“… Date:

โœ๏ธ Author: Hugo Nordell

๐Ÿ”– Topics: Cloud Computing

๐Ÿข Organizations: EnCube


When we first started building Encube, we realized that the only way to achieve the scale and speed of compute necessary to make real manufacturing simulation a core part of the product design cycle, would be to make all compute fully distributed. Not just multi-threaded, but truly distributed, with exponentially shorter compute times achieved through horizontal cloud scaling. And at the same time also leverage GPU compute, which is far more suited to linear algebra and 3D graphics related workloads, compared to the CPU.

If we consider the case of CNC machining, the market vertical weโ€™re diving deep into at Encube, the only meaningful way to understand manufacturability of a component is to understand what it will cost to produce. And the only way to do this reliably, is to simulate the machining process itself. Crude measures like calculating the amount of material to be removed and dividing by a constant material removal rate (which is the current standard practice) are insufficient to generate an accurate best practice cost estimate.

Read more at EnCube Blog

GE Aerospace's cloud journey with AWS

Databricks Announces Lakehouse for Manufacturing, Empowering the World's Leading Manufacturers to Realize the Full Value of Their Data

๐Ÿ“… Date:

๐Ÿ”– Topics: Cloud Computing

๐Ÿข Organizations: Databricks, DuPont, Honeywell, Rolls-Royce, Shell, Tata Steel


Databricks, the lakehouse company, today announced the Databricks Lakehouse for Manufacturing, the first open, enterprise-scale lakehouse platform tailored to manufacturers that unifies data and AI and delivers record-breaking performance for any analytics use case. The sheer volume of tools, systems and architectures required to run a modern manufacturing environment makes secure data sharing and collaboration a challenge at scale, with over 70 percent of data projects stalling at the proof of concept (PoC) stage. Available today, Databricksโ€™ Lakehouse for Manufacturing breaks down these silos and is uniquely designed for manufacturers to access all of their data and make decisions in real-time. Databricksโ€™ Lakehouse for Manufacturing has been adopted by industry-leading organizations like DuPont, Honeywell, Rolls-Royce, Shell and Tata Steel.

The Lakehouse for Manufacturing includes access to packaged use case accelerators that are designed to jumpstart the analytics process and offer a blueprint to help organizations tackle critical, high-value industry challenges.

Read more at PR Newswire

HAYAT HOLDING uses Amazon SageMaker to increase product quality and optimize manufacturing output, saving $300,000 annually

๐Ÿ“… Date:

โœ๏ธ Author: Neslihan Erdogan

๐Ÿ”– Topics: Machine Learning, Cloud Computing, Edge Computing

๐Ÿข Organizations: HAYAT HOLDING, AWS, Deloitte


In this post, we share how HAYAT HOLDINGโ€”a global player with 41 companies operating in different industries, including HAYAT, the worldโ€™s fourth-largest branded diaper manufacturer, and KEAS, the worldโ€™s fifth-largest wood-based panel manufacturerโ€”collaborated with AWS to build a solution that uses Amazon SageMaker Model Training, Amazon SageMaker Automatic Model Tuning, and Amazon SageMaker Model Deployment to continuously improve operational performance, increase product quality, and optimize manufacturing output of medium-density fiberboard (MDF) wood panels.

Quality prediction using ML is powerful but requires effort and skill to design, integrate with the manufacturing process, and maintain. With the support of AWS Prototyping specialists, and AWS Partner Deloitte, HAYAT HOLDING built an end-to-end pipeline. Product quality prediction and adhesive consumption recommendation results can be observed by field experts through dashboards in near-real time, resulting in a faster feedback loop. Laboratory results indicate a significant impact equating to savings of $300,000 annually, reducing their carbon footprint in production by preventing unnecessary chemical waste.

Read more at AWS Blog

BMW Group Celebrates Opening the World's First Virtual Factory in NVIDIA Omniverse

NVIDIA Expands Omniverse Cloud to Power Industrial Digitalization

๐Ÿ“… Date:

๐Ÿ”– Topics: Partnership, Cloud Computing

๐Ÿข Organizations: NVIDIA, Microsoft


NVIDIA today announced that NVIDIA Omniverseโ„ข Cloud, a platform-as-a-service that enables companies to unify digitalization across their core product and business processes, is now available to select enterprises. NVIDIA has selected Microsoft Azure as the first cloud service provider for Omniverse Cloud, giving enterprises access to the full-stack suite of Omniverse software applications and NVIDIA OVXโ„ข infrastructure, with the scale and security of Azure cloud services.

Read more at Globe Newswire

How BigQuery helps Leverege deliver business-critical enterprise IoT solutions at scale

๐Ÿ“… Date:

๐Ÿ”– Topics: IIoT, Cloud Computing

๐Ÿข Organizations: Google, Leverege


Leverege IoT Stack is deployed with Google Kubernetes Engine (GKE), a fully managed kubernetes service for managing collections of microservices. Leverege uses Google Cloud Pub/Sub, a fully managed service, as the primary means of message routing for data ingestion, and Google Firebase for real-time data and user interface hosting. For long-term data storage, historical querying and analysis, and real-time insights , Leverege relies on BigQuery.

BigQuery allows Leverege to record the full volume of historical data at a low storage cost, while only paying to access small segments of data on-demand using table partitioning. For each of these examples, historical analysis using BigQuery can help identify pain points and improve operational efficiencies. They can also do so with both public datasets and private datasets. This means an auto wholesaler can expose data for specific vehicles, but not the entire dataset (i.e., no API queries). Likewise, a boat engine manufacturer can make subsets of data available to different end users.

Read more at Google Cloud Blog

Walmart Amps Up Cloud Capabilities, Reducing Reliance on Tech Giants

๐Ÿ“… Date:

โœ๏ธ Author: Aaron Tilley

๐Ÿ”– Topics: Cloud Computing

๐Ÿข Organizations: Walmart


Walmart Inc. says it has developed the capability to switch seamlessly between cloud providers and its own servers, saving millions of dollars and offering a road map to other organizations that want to reduce their dependence on giant technology companies.

Read more at Wall Street Journal (Paid)

Introducing new Google Cloud manufacturing solutions: smart factories, smarter workers

๐Ÿ“… Date:

๐Ÿ”– Topics: Cloud Computing, Machine Health

๐Ÿข Organizations: Google, Litmus


The new manufacturing solutions from Google Cloud give manufacturing engineers and plant managers access to unified and contextualized data from across their disparate assets and processes.

Manufacturing Data Engine is the foundational cloud solution to process, contextualize and store factory data. The cloud platform can acquire data from any type of machine, supporting a wide range of data, from telemetry to image data, via a private, secure, and low cost connection between edge and cloud. With built-in data normalization and context-enrichment capabilities, it provides a common data model, with a factory-optimized data lakehouse for storage.

Manufacturing Connect is the factory edge platform co-developed with Litmus that quickly connects with nearly any manufacturing asset via an extensive library of 250-plus machine protocols. It translates machine data into a digestible dataset and sends it to the Manufacturing Data Engine for processing, contextualization and storage. By supporting containerized workloads, it allows manufacturers to run low-latency data visualization, analytics and ML capabilities directly on the edge.

Read more at Google Cloud Blog

Nonlinear Static Analysis: Snap-Fit Assembly

๐Ÿ“… Date:

โœ๏ธ Author: Nur Ozturk

๐Ÿ”– Topics: Simulation, Cloud Computing

๐Ÿข Organizations: SimScale


Cloud-native engineering simulation enables engineers to test the structural performance and structural integrity of their designs earlier and with accuracy. Advanced solvers that account for thermal and structural behavior can be accessed to provide robust assessments of deformation, stresses, and other design critical output quantities. In this article, we analyze the structural performance and integrity of a casing snap-fit assembly using cloud-native nonlinear static analysis. The focus of this analysis was to detect the peak stress regions, and therefore better understand the likelihood of permanent deformations. After analyzing the structural behavior, the design goal was to ensure safe snap operations, while minimizing the material yielding.

Read more at SimScale Blog

Using Ventilation Simulation to Increase the Performance of HVAC Systems

๐Ÿ“… Date:

โœ๏ธ Author: Paras Ghumare

๐Ÿ”– Topics: cloud computing

๐Ÿข Organizations: SimScale


For the first time, HVAC engineers are able to explore the full design space for HVAC product designs, not just at the component level but the spatial (room) level where the products are installed. This reduces cost and time by avoiding the trial-and-error characteristics typically seen in physical prototyping.

Read more at SimScale Blog

Announcing the Microsoft Cloud for Manufacturing preview

๐Ÿ“… Date:

โœ๏ธ Author: Caglayan Arkan

๐Ÿ”– Topics: Cloud computing

๐Ÿข Organizations: Microsoft, Johnson & Johnson


The Microsoft Cloud for Manufacturing brings the best outcome-driven solutions and capabilities from Microsoft and our partners to accelerate time-to-value for our customers in an end-to-end, holistic, and scalable way. By connecting intelligent, integrated cloud, and edge capabilities of the Microsoft stack to the highest value manufacturing scenarios, we are creating a flywheel of innovation that helps businesses increase asset and frontline worker productivity in safe and secure factories, enable remote selling and always-on service, and unlock cloud-based innovationโ€”all with the utmost trust, compliance, privacy, and transparency.

I am particularly excited about how we are integrating Microsoft Teams frontline workers and mixed reality across these capabilities. This will increase productivity in hybrid work scenarios, and allow insights from securely connected IoT assets and products to be integrated into workflows and business processes in Microsoft Dynamics 365 Business Applications and partner solutions.

Read more at Microsoft Blog

Western Digitalโ€™s Journey To Build Business Resiliency Through Cloud And ERP Transformation

๐Ÿ“… Date:

โœ๏ธ Author: Patrick Moorhead

๐Ÿ”– Topics: digital transformation, cloud computing, enterprise resource planning

๐Ÿข Organizations: Western Digital, Infosys


In 2019, Western Digital started the most crucial part of the transformation journey. This fourth and final phase would transform manufacturing, inventory operations, and intercompany finance for 10 manufacturing plants across five countries, contract manufacturers and end users in a future-ready platform. Infosys was engaged to bring in an outside-in industry view to challenge current business practices and identify opportunities to harmonize process across the sites and standardize by eliminating custom practices.

The program was divided in multiple sub-phases. First sub-phase involved transforming manufacturing operations and intercompany transfers between component factories alongside payroll consolidation, reporting consolidation in Oracle BI. Second sub-phase had as many as 12 parallel projects for bringing hard disk drive manufacturing operations to cloud and consolidating all shipping and revenue operations, making way to retire two out of three legacy ERPs.

Read more at Forbes

Forecast Anomalies in Refrigeration with PySpark & Sensor-data

๐Ÿ“… Date:

๐Ÿ”– Topics: anomaly detection, predictive maintenance, cloud computing

๐Ÿข Organizations: Walmart


A refrigeration has four important components: Compressor, Condenser Fan, Evaporator Fan & Expansion Valve. Loosely speaking, together they try to keep the pressure at a reasonable level so as to maintain the temperature within (Remember, PV = nRT). In Walmart, we collect sensor data for all of these components (eg. pressure, fan speed, temperature) at a 10 minutes interval along with metrics like if the system is in defrost or not, compressor is locked out or not etc. We also capture outside air temperature as it impacts the condenser fan speed and in turn, the temperature.

The objective is to minimize the number of malfunctions and suggest probable resolutions of the same to save time. So, we leveraged this telemetry information in order to forecast anomalies in temperature, which would help in prioritizing issues and be proactive rather than reactive.

Read more at Walmart Global Tech Blog

Visual Inspection AI: a purpose-built solution for faster, more accurate quality control

๐Ÿ“… Date:

โœ๏ธ Authors: Mandeep Wariach, Thomas Reinbacher

๐Ÿ”– Topics: cloud computing, computer vision, machine learning, quality assurance

๐Ÿข Organizations: Google


The Google Cloud Visual Inspection AI solution automates visual inspection tasks using a set of AI and computer vision technologies that enable manufacturers to transform quality control processes by automatically detecting product defects.

We built Visual Inspection AI to meet the needs of quality, test, manufacturing, and process engineers who are experts in their domain, but not in AI. By combining ease of use with a focus on priority uses cases, customers are realizing significant benefits compared to general purpose machine learning (ML) approaches.

Read more at Google Cloud Blog

Total Cost of Ownership Guide: No-Code App Platforms vs Traditional MES

๐Ÿ“… Date:

โœ๏ธ Author: Jen Dyment

๐Ÿ”– Topics: cloud computing, IIoT

๐Ÿข Organizations: Tulip


Youโ€™ve found a no-code, IIoT native application platform that can replace your MES partially or fully. You are excited about augmenting human workflows, flexible deployments, and continuous improvements โ€” but you have to do your due diligence and prove ROI.

We get it! No-Code App Platforms are new to the Industrial and Manufacturing technology landscape. Even though they were developed for a different era, Manufacturing Execution Systems (MES) are a tried and tested means of coordinating, executing, and tracking manufacturing processes.

Read more at Tulip

What Walmart learned from its machine learning deployment

๐Ÿ“… Date:

โœ๏ธ Author: Katie Malone

๐Ÿ”– Topics: cloud computing, machine learning

๐Ÿข Organizations: Walmart


As more businesses turn to automation to realize business value, retailโ€™s wide variety of ML use cases can provide insights into how to overcome challenges associated with the technology. The goal should be trying to solve a problem by using ML as a tool to get there, Kamdar said.

For example, Walmart uses a ML model to optimize the timing and pricing of markdowns, and to examine real estate data to find places to cut costs, according to executives on an earnings call in February.

Read more at Supply Chain Dive

Run Semiconductor Design Workflows on AWS

๐Ÿ“… Date:

๐Ÿ”– Topics: Cloud Computing

๐Ÿญ Vertical: Semiconductor

๐Ÿข Organizations: AWS


This implementation guide provides you with information and guidance to run production semiconductor workflows on AWS, from customer specification, to front-end design and verification, back-end fabrication, packaging, and assembly. Additionally, this guide shows you how to build secure chambers to quickly enable third-party collaboration, as well as leverage an analytics pipeline and artificial intelligence/machine learning (AI/ML) services to decrease time-to-market and increase return on investment (ROI). Customers that run semiconductor design workloads on AWS have designed everything from simple ASICs to large SOCs with tens of billions of transistors, at the most advanced process geometries. This guide describes the numerous AWS services involved with these workloads, including compute, storage, networking, and security. Finally, this paper provides guidance on hybrid flows and data transfer methods to enable a seamless hybrid environment between on-premises data centers and AWS.

Read more at AWS Technical Guide

Strategic Analytics Help Intertape Polymer Shrink Inefficiencies

๐Ÿ“… Date:

โœ๏ธ Author: Peter Fretty

๐Ÿ”– Topics: cloud computing, quality assurance

๐Ÿญ Vertical: Plastics and Rubber

๐Ÿข Organizations: Intertape Polymer Group, Sight Machine


For Intertape Polymer Group (IPG), a global manufacturer of packaging and protective solutions for industrial and e-commerce applications, the digital transformation process has always been about embracing technology with a keen eye on extracting the overall business value. As such, IPG is currently at different levels of maturity across the portfolio of digital technology deployments, including additive manufacturing, AR/VR training, IoT-based predictive downtime and robotic process automation.

IPG has taken advantage of the unique data modeling capabilities of the Sight Machine platform, which continuously transforms all data types generated by factory equipment and manufacturing software into a robust data foundation for analyzing and modeling a plantโ€™s machines, production processes and finished products.

Read more at IndustryWeek

AWS Announces General Availability of Amazon Lookout for Vision

๐Ÿ“… Date:

๐Ÿ”– Topics: cloud computing, computer vision, machine learning, quality assurance

๐Ÿข Organizations: AWS, Basler, Dafgards, General Electric


AWS announced the general availability of Amazon Lookout for Vision, a new service that analyzes images using computer vision and sophisticated machine learning capabilities to spot product or process defects and anomalies in manufactured products. By employing a machine learning technique called โ€œfew-shot learning,โ€ Amazon Lookout for Vision is able to train a model for a customer using as few as 30 baseline images. Customers can get started quickly using Amazon Lookout for Vision to detect manufacturing and production defects (e.g. cracks, dents, incorrect color, irregular shape, etc.) in their products and prevent those costly errors from progressing down the operational line and from ever reaching customers. Together with Amazon Lookout for Equipment, Amazon Monitron, and AWS Panorama, Amazon Lookout for Vision provides industrial and manufacturing customers with the most comprehensive suite of cloud-to-edge industrial machine learning services available. With Amazon Lookout for Vision, there is no up-front commitment or minimum fee, and customers pay by the hour for their actual usage to train the model and detect anomalies or defects using the service.

Read more at Business Wire

Introducing Microsoft Cloud for Manufacturing

๐Ÿ“… Date:

โœ๏ธ Author: ร‡aฤŸlayan Arkan

๐Ÿ”– Topics: digital twin, cloud computing, wearable technology

๐Ÿข Organizations: Microsoft, Kennametal, Lexmark, Sandvik, Bosch, Honeywell


What makes the Microsoft Cloud for Manufacturing unique is our commitment to industry-specific standards and communities, such as the Open Manufacturing Platform, the OPC Foundation, and the Digital Twins Consortium, as well as the co-innovation with our rich ecosystem of partners.

Read more at Microsoft Cloud Blogs

Industrial DataOps: Unlocking Data and Analytics for Industry 4.0

๐Ÿ“… Date:

โœ๏ธ Author: @billbither

๐Ÿ”– Topics: cloud computing, edge computing, IIoT

๐Ÿข Organizations: MachineMetrics


As an approach to data analytics, DataOps is all about reducing the time to high-accuracy analyses using automation, statistical process control, and agile methodologies so that manufacturers are able to use the data they collect quicker and with a higher degree of confidence.

The role of DataOps in Industry 4.0 is to take all of the info created and collected by machines, like IIoT devices, and effectively condense them into refined, usable business โ€œfuelโ€ to drive decision-making, rather than be left to sit in a data warehouse, unexamined.

Read more at MachineMetrics

Advantages of Migrating to Cloud for Enterprise Analytics Environment

๐Ÿ“… Date:

โœ๏ธ Author: Sridhar Leekkala

๐Ÿ”– Topics: cloud computing

๐Ÿข Organizations: Walmart


We are a data team. We spend the bulk of our efforts building out data pipelines from operational systems into our Decision Support infrastructure. We synthesize the analytical data assets from operational data flow and publish these assets for consumption across the enterprise. Our ETL pipelines are built using an in-house ETL framework with workflows that run on Map Reduce and tuned with TEZ parameters and some workloads using Apache Spark. Data flows through a series of logical stages from various sources across the organization into a โ€œRaw Zoneโ€,โ€ Cleansedโ€, and โ€œTransformedโ€ to build multiple fact tables suitable for the Enterprise teamโ€™s use-cases. The data is then flattened and loaded to the consumption layers for ease of business analysis and reporting. These works might be common among most of the companies today, and we hope that our story about overcoming a series of challenges through a cloud migration resonates with you and your teams.

Read more at Walmart Global Tech

Facilitating IoT provisioning at scale

๐Ÿ“… Date:

โœ๏ธ Author: Richard Elberger

๐Ÿ”– Topics: cloud computing, edge computing, IIoT

๐Ÿข Organizations: AWS


Whether youโ€™re looking to design a new device or retrofitting an existing device for the IoT, you will need to consider IoT provisioning which brings IoT devices online to cloud services. IoT provisioning design requires decisions to be made that impact user experience and security for both network commissioning and credential provisioning mechanisms which configure digital identities, cloud end-points, and network credentials so that devices can securely connect to the cloud.

Read more at Embedded.com

Advanced Technologies Adoption and Use by U.S. Firms: Evidence from the Annual Business Survey

๐Ÿ“… Date:

โœ๏ธ Authors: Nikolas Zolas, Zachary Kroff, Erik Brynjolfsson, Kristina McElheran, David N. Beede, Cathy Buffington, Nathan Goldschlag, Lucia Foster, Emin Dinlersoz

๐Ÿ”– Topics: AI, augmented reality, cloud computing, machine learning, Radio-frequency identification, robotics


While robots are usually singled out as a key technology in studies of automation, the overall diffusion of robotics use and testing is very low across firms in the U.S. The use rate is only 1.3% and the testing rate is 0.3%. These levels correspond relatively closely with patterns found in the robotics expenditure question in the 2018 ASM. Robots are primarily concentrated in large, manufacturing firms. The distribution of robots among firms is highly skewed, and the skewness in favor of larger firms can have a disproportionate effect on the economy that is otherwise not obvious from the relatively low overall diffusion rate of robots. The least-used technologies are RFID (1.1%), Augmented Reality (0.8%), and Automated Vehicles (0.8%). Looking at the pairwise adoption of these technologies in Table 14, we find that use of Machine Learning and Machine Vision are most coincident. We find that use of Automated Guided Vehicles is closely associated with use of Augmented Reality, RFID, and Machine Vision.

Read more at National Bureau of Economic Research

AI Solution for Operational Excellence

๐Ÿ“… Date:

๐Ÿ”– Topics: Manufacturing Analytics, Cloud Computing

๐Ÿข Organizations: Falkonry, AWS


Falkonry Clue is a plug-and-play solution for predictive production operations that identifies and addresses operational inefficiencies from operational data. It is designed to be used directly by operational practitioners, such as production engineers, equipment engineers or manufacturing engineers, without requiring the assistance of data scientists or software engineers.

Read more at AWS Marketplace