Haber–Bosch Process

Assembly Line

Fixing the Haber–Bosch process

📅 Date:

✍️ Author: Jamie Durrani

🔖 Topics: Haber–Bosch Process, Sustainability

🏭 Vertical: Chemical


But the Haber–Bosch process hasn’t changed all that much since its discovery more than 100 years ago. The process uses iron or ruthenium catalysts to react hydrogen and nitrogen together under extreme conditions. Temperatures can reach 600°C, with pressures raised to over 200 times that of the Earth’s atmosphere.

Transforming ammonia production is likely to move in two stages. The first involves adapting current production methods so that green hydrogen can be used as a feedstock, with renewable electricity used to power the plants. Further into the future, new methods that rely on completely different chemistry could come online.

The very high pressures associated with Haber–Bosch help to maximise the amount of nitrogen and hydrgeon that is converted into ammonia in a single pass, without having to be fed back into the reactor. In current facilities, the compression systems are based on steam that is a byproduct of the reaction that makes the hydrogen feedstock from fossil hydrocarbons. But if the process is to be based on green hydrogen, it would make sense to use much more energy-efficient electric compressors.

Read more at Chemistry World