Automated Guided Vehicle (AGV)
Assembly Line
MHI's Automated Picking Solution Utilizing Ξ£SynX Fully Implemented at Kirin Group's Ebina Logistics Center, the First Such System in Japan
The automated picking solution utilizing Ξ£SynX, developed by MHI Group, introduces automation and intelligence for the picking work that up to now has been performed manually by workers, who have also been responsible for considering how to improve efficiency in their picking operations. The system utilizes a proprietary optimization engine and integrated control system to efficiently coordinate multiple automated guided forklifts (AGFs), automated guided vehicles (AGVs), and palletizers in order to reduce the number of picking and transfer operations, optimize the picking process, and improve throughput (processing capacity).
MHI Group continues to collaborate with Kirin Group on joint demonstration projects for the automation of inbound and outbound processes at beverage warehouses using a new type of unmanned forklift equipped with Ξ£SynX, and automation solutions for the loading and unloading of trucks.
Massimo Motor Robotic Assist Assembly Line
Compact Wheel Drives Deliver Reliability and Smooth Motion to Mobile Robot Applications
Compact mobile robots are playing an increasingly important role in modern industrial environments. To meet growing productivity demands, however, their performance must also improve. To this end, itβs important to design mobile robots using high-quality components that feature smaller sizes without sacrificing capabilities. Our new family of compact wheel drives (CWDs) β the CWD-500 and CWD-1000 β offer an integrated motor-and-wheel solution that delivers on these requirements.
The CWD-500 and CWD-1000, which require 600 and 1,200 watts of power, respectively, feature an innovative design that allows them to provide smooth motion in a cost-effective, compact form factor. Their integrated wheel drive design simplifies installation by removing the hassle of combining a motor, gearbox and wheel, cutting down on costs and boosting both reliability and performance. Each CWD can last up to 30,000 hours of operation.
Our wheel drives are optimized for mobile robot applications like autonomous mobile robots (AMR) and automated guided vehicles (AGV). Each wheel drive features excellent power and torque density. Additionally, their integrated gearboxes ensure efficient operation with 90% reducer efficiency with a 15:1 gear ratio. For precise positioning, both wheel drives feature a 16,384-count encoder and are designed to minimize backlash to less than 30 arcminutes.
Super Payload AGV Animation
JF35-ADN1 industrial robotics motherboards by Jetway
Jetway has recently introduced a new motherboard, the JF35-ADN1, which is set to significantly impact the field of industrial robotics, including the technology used in Automated Guided Vehicles (AGV). This advanced motherboard is designed to support complex machine vision systems and secure payment solutions, powered by the robust Intel Processor N97 CPU. It stands out with its exceptional connectivity and display options, making it a key player in the realm of industrial automation.
Huawei, Midea Group, and China Unicom Build 5G Smart Factory
π§ π€ Optimising Intralogistics with AI
In its production facilities in Barntrup, KEB operates the in-house transport system AGILOX, which is designed specifically for intralogistics tasks. The AGILOX system is comprised of a swarm (union) of smart automated guided vehicles (AGVs), working collaboratively to transport items throughout KEBβs warehouses.
In AutoQML β a project that develops solution approaches for linking quantum computing and machine learning β KEBs primary objective is to devise a machine learning solution capable of monitoring vehicle status and predicting potential failures. This aligns with KEBs larger objective of facilitating the broader transition to quantum computing in the future, by supporting research institutes with practical, real-world applications.
VDA 5050 Explained β An Overview of the Evolving AGV Communication Standard
VDA 5050 is a standardized interface for AGV communication. Specifically, this standard concerns the communication between AGVs (often called Fahrerloser Transportsysteme/Transportfahrzeuge (FTS) in Germany) and a master control (in other words, a fleet management software program).
BlueBoticsβ ANT server software already enables the management of a diverse fleet of ANT driven vehicles, no matter what the vehicle type (tractor, forklift, underride, etc.) or brand β provided these AGVs are built upon our ANT lite+ navigation solution.
VDA 5050 intends to provide a more generic version of this functionality, which would enable every compliant AGV to work together. At the time of writing (December 2022), it is questionable as to whether the standard achieves this goal. We will discuss this further later in this post.
AGVs for Automating Heavy Load Manufacturing Conveyance
For right nowβs heavy producers, conveyance automation methods should be extraordinarily sturdy and able to transporting high-capacity payloads, but additionally ship the excessive ranges of flexibility, security and scalability anticipated from right nowβs cell robotic methods. Trendy automated guided automobiles can do exactly that.
Trendy automated guided automobiles mix the capabilities set of autonomous cell robots β flexibility, security and scalability β with the load capability of towline conveyors. As such, they supply producers with the most effective of each worlds, a cheap, versatile, heavy load conveyance answer for manufacturing construct traces designed for manufacturing as itβs performed right now, and that may meet the manufacturing calls for of tomorrow.
Autonomous intralogistics from indoors to outdoors for a safe and seamless logistics chain
A simulation-based approach to design an automated high-mix low-volume manufacturing system
In this paper, we address the profit optimization problem of an automated high-mix low-volume manufacturing system, which originates from a real-world problem at our industry partner. The manufacturing system includes buffer units from which jobs are automatically transported to workstations, i.e., using automated material handling devices. We consider three different automation concepts for the system: (1) a configuration with parallel buffers and a dedicated robot to work them, (2) a configuration that employs shared buffers that are tended to by automated guided vehicles (AGVs), and (3) a proposed hybrid configuration that takes elements of both aforementioned configurations. We propose a simulation-based approach, which uses simulated-annealing (SA), enriched with the reduced variable neighborhood search (RVNS), to determine the best system configuration for a high-mix, low-volume manufacturer. Decisions concern the choice of automation equipment and the capacity of both parallel and shared buffers. We illustrate the efficacy of the proposed hybrid concept and the proposed SA-RVNS approach with an industry case study using real-world data from our industry partner. Our analysis shows that the proposed concept increases the profit by around 10β30% compared to the others, and the AGV travel time plays an important factor in the proposed concept to yield its true potential.
Action-limited, multimodal deep Q learning for AGV fleet route planning
In traditional operating models, a navigation system completes all calculations i.e., the shortest path planning in a static environment, before the AGVs start moving. However, due to constant incoming offers, changes in vehicle availability, etc., this creates a huge and intractable optimization problem. Meanwhile, an optimal navigation strategy for an AGV fleet cannot be achieved if it fails to consider the fleet and delivery situation in real-time. Such dynamic route planning is more realistic and must have the ability to autonomously learn the complex environments. Deep Q network (DQN), that inherits the capabilities of deep learning and reinforcement learning, provides a framework that is well prepared to make decisions for discrete motion sequence problems.
MiR robots improve productivity at Faurecia
AGV and AMR: What is the Actual Difference?
In logistics centers and production halls, there are always a lot of pallets, crates, mesh boxes, racks and numerous other objects that must be transported. This task can be accomplished by forklifts with human operators behind the steering wheel. Increasingly, driverless transport systems (DTS) are being used to move goods autonomously from A to B.
These driverless transport vehicles include Automated Guided Vehicles (AGVs) and Autonomous Mobile Robots (AMRs). Although they both accomplish the same tasks, these abbreviations should not be used synonymously: the two vehicle types are different and each of them has specific characteristics.
The A in AGV stands for Automated, while the A in AMR stands for Autonomous: a small difference with major significance. As the name suggests, AMRs operate autonomously, for instance by evading obstacles that suddenly block their path. On the other hand, AGVs travel on fixed routes and can only accomplish pre-defined tasks by following automated instructions. In contrast, AMRs make their own decisions when a situation requires.
Start-ups Powering New Era of Industrial Robotics
Much of the bottleneck to achieving automation in manufacturing relates to limitations in the current programming model of industrial robotics. Programming is done in languages proprietary to each robotic hardware OEM β languages βstraight from the 80sβ as one industry executive put it.
There are a limited number of specialists who are proficient in these languages. Given the rarity of the expertise involved, as well as the time it takes to program a robot, robotics application development typically costs three times as much as the hardware for a given installation.