Automated Fiber Placement

Assembly Line

3D printing ‘World’s Largest’ carbon composite rocket on Rocket Lab’s 90-ton 3D printer

📅 Date:

✍️ Author: Alex Tyrer-Jones

🔖 Topics: Additive Manufacturing, Automated fiber placement, Large-scale printing

🏭 Vertical: Aerospace

🏢 Organizations: Rocket Lab, Electroimpact


Californian space launch company Rocket Lab is using a 90-ton 3D printer to build what are said to be the ‘largest carbon composite rocket structures in history.’ The company’s 3D printer, a custom-built automated fiber placement (AFP) machine, is reportedly the biggest system of its kind in the world. Made in the United States by Electroimpact, the robotic 3D printer is 39 ft (12 meters) tall, and can lay down 328 ft (100 meters) of continuous carbon fiber composite per minute.

Rocket Lab has implemented the large-scale AFP machine at its Space Structures Complex in Middle River, Maryland. It is designed to automate the production of all major composite structures for the company’s reusable Neutron launch vehicle. These include panels for the 91-foot (28-meter) interstage and fairing, the 22.9-foot (7-meter) diameter first stage, and the 16.4-foot (5-meter) diameter second stage tanks.

According to Rocket Lab, while it takes several weeks to build a stage 2 dome using conventional, manual methods, the AFP machine can produce one in just 24 hours. The company anticipates it will save over 150,000 hours when constructing rocket structures with AFP technology.

Read more at 3D Printing Industry

Rocket Lab Begins Installation of Large Carbon Composite Rocket-Building Machine

📅 Date:

🔖 Topics: Automated Fiber Placement

🏢 Organizations: Rocket Lab, Electroimpact


Rocket Lab USA, Inc. (Nasdaq: RKLB) announced it has begun installation of the largest automated fiber placement (AFP) machine of its kind into the Company’s Neutron rocket production line in Middle River, MD. The AFP machine will enable Rocket Lab to automate production of the largest carbon composite rocket structures in history.

The custom-built 99 ton (90 tonne), 39 ft tall (12-meter) robotic machine, American-made by Electroimpact in Washington, has just completed final acceptance testing with the manufacturer and installation has begun at Rocket Lab’s Space Structures Complex in Middle River, Maryland. The new machine will automate the production of all large composite structures of the Neutron launch vehicle including the panels that make up the 91 ft (28 meter) length interstage and fairing, 22.9 ft (7 meter) diameter first stage, and the 16.4 ft (5 meter) diameter second stage tank.

The autonomous machine can move up to 98 ft (30 meters) in length and lay down continuous carbon fiber composite at a rate of 328 ft (100 meters) per minute. The AFP machine also has a fully automated real-time inspection system that hunts for miniscule defects throughout the laminated carbon composite and alerts the machine operator of any issues before the machine begins laying down the next layer, providing additional assurance that these critical structures of the launch vehicle meet Rocket Lab’s high-quality standards required for reusable Neutron launches.

Read more at Business Wire

Plant tour: Middle River Aerostructure Systems, Baltimore, Md., U.S.

📅 Date:

✍️ Author: Ginger Gardiner

🔖 Topics: RFID, Automated Fiber Placement

🏭 Vertical: Aerospace

🏢 Organizations: Middle River Aerostructure Systems, Eastman Machine, Plataine, Electroimpact


Current production programs at MRAS include the LEAP-1A engine for the Airbus A320neo, LEAP-1C for the Comac C919, the CF-6 engine for multiple civil and military widebody aircraft, the Passport 20 engine for Bombardier’s Global 7500 business jet, the CF34-10A engine for the Comac ARJ21 and the GE9X engine for the Boeing 777X.

“For us, it was the integration with engineering, ERP and MRP that was key,” says Diederich. “Plataine integrates into all of this. It manages the raw materials coming in, generates cut plans per our engineering and marks the labels on the kit plies. We can dynamically nest up to 10 parts. The Plataine software uses AI to recommend which rolls of raw material should be cut next.” What is dynamic nesting? “Optimizing the nests on the fly as the software receives new inputs or when we query it,” says Diederich. “It can also send us alarms to change materials or operations. The sorted ply information is output to the Eastman systems, which have “cut and collect” software that identifies plies for kits using different colored lights. These match stacking tables at the conveyor’s end. ”

Read more at Composites World

Composites & Automated Solutions - The Cincinnati Robotic Viper