Synera

Assembly Line

BMW Group expands use of 3D-printed, customised robot grippers

đź“… Date:

đź”– Topics: Additive Manufacturing, 3D Printing

🏢 Organizations: BMW, Synera


The BMW Group now also manufactures many work aids and tools for its own production system in various 3D printing processes. From tailor-made orthoses for employees, and teaching and production aids, to large, weight-optimised robot grippers, used for such things as CFRP roofs and entire floor assemblies. At the “Additive Manufacturing Campus” in Oberschleißheim, the BMW Group’s central hub for production, research and training in 3D printing, more than 300,000 parts were “printed” in 2023. Furthermore, over 100,000 printed parts were produced per year across all the plants that form the global production network, from Spartanburg and the German plants to sites in Asia.

Additive manufacturing processes have been used on a daily basis for a long time at BMW Group Plant Landshut. For many years, these have included moulds for the manufacturing of aluminium cylinder heads, which are printed three-dimensionally using the sand casting process. Here, sand is repeatedly applied in thin layers and stuck together using binders. This makes it possible to create moulds for the manufacturing of very complex structures, which are then filled with liquefied aluminium.

For a number of years, the BMW Group’s Lightweight Construction and Technology Centre in Landshut has been using a particularly large gripper element, which was made using the 3D printing process. Weighing around 120 kilograms, the gripper for a robot can be manufactured in just 22 hours and is then used on a press in the production of all CFRP roofs for BMW M GmbH models. The press is first loaded with the CFRP raw material. The gripper is simply rotated 180 degrees to remove the finished roofs. Compared to conventional grippers, the version manufactured using 3D printing was roughly 20 percent lighter, which in turn extend the operating life of the robots and also reduced wear and tear on the system, as well as cutting maintenance intervals. The combined use for two steps also reduced the cycle time. A unique feature of the robot gripper is the ideal combination of two different 3D printing processes. While the vacuum grippers and the clamps for the needle gripper to lift the CFRP raw material are made using selective laser sintering (SLS), the large roof shell and bearing structure are manufactured using large scale printing (LSP). LSP can be used to produce large components economically and sustainably. The process uses injection moulding granules and recycled plastics, while CFRP residual material can also be used and recycled. Compared to the use of primary raw materials, CO2 emissions when manufacturing the gripper are roughly 60 percent lower.

Read more at BMW Press