Fabrex

Assembly Line

HP Accelerates 3D Printing Adoption with New Innovations and Collaborations at Formnext 2024

đź“… Date:

đź”– Topics: Partnership, Additive Manufacturing

🏢 Organizations: HP, Evonik, ArcelorMittal, Fabrex, Eaton


HP has also introduced HP 3D HR PA 12 FR enabled by Evonik, a new halogen-free, flame-retardant material for 3D printing. This innovative material is 50% reusable, offering a substantial cost advantage through its high reusability ratio. This breakthrough offers significant cost savings that pave the way for scaling applications in industrial and consumer electronics.

To further streamline and optimize 3D printing workflows, HP announced the HP 3D Build Optimizer, an automated tool designed to re-nest parts, reduce build costs and maintain part quality. Slated for launch in 2025, this tool is in line with overall cost optimization strategies and harnesses HP’s proprietary insights to bring greater efficiency to every project.

Also, through a new collaboration with Fabrex, HP customers can access an AI-powered platform that supports build preparation, order management, and tracking, creating a seamless, efficient experience for users of HP 3D printers.

HP’s collaboration with ArcelorMittal, a leader in sustainable steel production, demonstrates how HP Metal Jet S100 technology is advancing 3D printing across industrial sectors like automotive. By combining HP’s additive manufacturing expertise with ArcelorMittal’s sustainable steel innovations, this partnership aims to reduce production costs, expand material options, and drive broader adoption of 3D-printed steel in key industries. Together, HP and ArcelorMittal are setting new standards for industrial-scale 3D printing applications.

HP is also collaborating with Eaton to support testing and validation of significant advancements in its Metal Jet 3D printing solution. Key innovations include nitrogen-enhanced sintering, which improves the mechanical properties of 316L metal parts, and the S100 Powder Processing Solution, which reduces cost and improves yield in binderjet processes. Together, they will evaluate the technology’s potential for high-performance applications, ensuring it meets the industry’s demands. Eric Johnson, Senior Manager Additive Manufacturing at Eaton Research Labs, added, “Partnering with HP on this program has been an exciting opportunity to advance the manufacturing readiness of this technology and develop a cost-effective process that meets the requirements for our most demanding applications.”

Read more at HP Newswroom