Arrival
Assembly Line
Conveyor-Less Micro Factories for Urban Car Production
The automobile manufacturing value chain consists of a press shop, body shop, paint shop and assembly. The assembly process is different from other processes in terms of automation. The level of automation in press shops, body shops and paint shops is usually very high. Many are nearly 100 percent automated. However, final assembly is difficult to automate due to the complexity of the tasks and diversity of the parts.
One way to achieve mass individualization while maintaining various automation levels is to decouple final assembly from the value chain. The press shop, body shop and paint shop would continue as mass production centers in central locations, while final assembly would be carried out in separate micro factories located in urban areas. The assembly process does not need to be physically located with the other manufacturing processes. Instead, it can be moved to an urban area where the labor supply is elastic. Low-volume, high-mix production can be realized with this model.
An urban automotive assembly plant should be designed for maximum flexibility, minimal capital investment and asynchronous production. That points away conveyors and favors autonomous transport technologies. Two options are available: autonomous mobile robots (AMR) and VaaC. AMRs are vehicles that are equipped with on-board sensors to autonomously move vehicles or materials along predefined paths without the need for magnetic tapes on the floor. In VaaC, the EV guides itself through the assembly process. A sensor skid, temporarily attached under the EV, guides the EV based on local sensing and communication with a high-level fleet management system. The skid is designed to be easily removed at the end of the assembly. The skid body has a set of pins that temporarily engage with locating holes in the underbody. The skid is equipped with numerous sensors that detect objects around the EV.