Elastic strain engineering

Assembly Line

Semiconductor advancements: Elastic strain ‘map’ guides the fine-tuning of material properties

📅 Date:

✍️ Author: Lisa McDonald

🔖 Topics: Elastic strain engineering, Materials Science

🏭 Vertical: Semiconductor


If manufacturers are to meet the demand for semiconductors and improved computing performance, new materials and system structures must be identified and implemented. Elastic strain engineering (ESE) may help address this need. In contrast to doping, which tunes a semiconductor’s properties by adding trace amounts of other elements into the material, ESE tunes a material’s properties solely through the introduction of controlled mechanical strain. This method can be an easier way to tune the properties of wide-bandgap semiconductors, such as diamond, which are difficult to dope.

In February 2024, the researchers published their latest paper on the topic. In contrast to previous studies, which focused on answering specific open questions in the field, the new open-access paper took that knowledge and created a general “map” showing how to tune crystalline materials to produce specific thermal and electronic properties. The map, which was created using a combination of first principles calculations and machine learning, plots the stability regions of a crystal in six-dimensional strain space. Looking at the map reveals the conditions under which a material can exist in a particular phase and when it might fail or transition to another phase.

Read more at The American Ceramic Society