Directed energy deposition

Assembly Line

Industry’s First Technology to Use Magnesium Alloys in Wire-Laser Metal 3D Printer Developed by Multi-sector Consortium in Japan

📅 Date:

🔖 Topics: 3D Printing, Additive manufacturing, Directed energy deposition

🏢 Organizations: Mitsubishi Electric, Kumamoto University, TOHO KINZOKU, JAXA


Magnesium Research Center (MRC) of Kumamoto University, TOHO KINZOKU CO., LTD., and the Japan Aerospace Exploration Agency (JAXA) announced the 3D printing industry’s first high-precision additive manufacturing (AM) technology for using magnesium alloys in a wire-laser metal 3D printer via the directed energy deposition (DED) method, marking a significant leap forward in industrial manufacturing. Unlocking the potential to process magnesium alloys with unparalleled precision and complexity will pave the way for rocket, automobile, aircraft, etc. components that are lighter and stronger than those made of iron or aluminum, leading to improved fuel efficiency and, in the case of rockets, reduced production costs. In addition, the envisioned production processes based on a wire-laser metal 3D printer will be more energy efficient and generate fewer greenhouse gas emissions compared to conventional processes, promising to deliver low-impact solutions for increased sustainability.

The consortium combined Mitsubishi Electric’s metal 3D printer, which uses the wire-laser DED method and metal wire instead of metal powder as a material, with a highly nonflammable KUMADAI heat-resistant magnesium alloy developed by MRC. In tests, Mitsubishi Electric repeated the molding process with the KUMADAI heat-resistant magnesium alloy produced by TOHO KINZOKU using advanced wire drawing technology. The result is a new technology that uses a magnesium-alloy wire as an AM material and precise temperature control to prevent combustion.

Read more at JAXA Press