4M Partners
Assembly Line
Improving advanced manufacturing practices through AI's Bayesian network
With experience, we learn awareness of events and conditions in our plant environment. As our experience matures, we learn the possibility of a given set of events and conditions resulting in certain outcomes. Computational models can perform the same service by capturing events and conditions, then calculating the probability of certain consequences. If the probability of an anticipated outcome is unacceptable, our computers can inform us of a condition needing attention or address the situation themselves. This, along with collecting meaningful volumes of relevant data, is the core of AI.
One mathematical model employed in AI is the Bayesian network (BN), which is a graph that defines the relationships between conditions or events and their possible consequences. The conditions or events are random variables that are identified on a BN as a node.